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Isothermal-expansion melting of two-dimensional 
colloidal monolayers on the surface of water 

A J Armstrong, R C Mockler and W J O’Sullivan 
Condensed Matter Laboratory, Department of Physics, University of Colorado, Boulder, 
CO 80309, USA 

Received 22 December 1987, in final form 5 October 1988 

Abstract. Monodisperse distributions of 1.01 pm and 2.88 pm polystyrene microspheres in 
monolayers on the surface of water were used in a study of isothermal-expansion melting 
in two dimensions. The equation of state, defect structures, and the translational and 
orientational correlation functions were obtained from digitised particle positions as the 
particle-number density ranged from the ordered solid to the liquid phase. The 2.88 pm 
system showed evidence of defect mediated melting and of an intermediate hexatic phase, 
in partial accord with the theoretical results of Kosterlitz, Thouless, Halperin, Nelson and 
Young. Melting in the 1.01 pm system appeared to proceed by a weak first-order transition. 
If so, the difference in melting behaviour of the two samples may reflect differences in defect 
core creation energies which can be traced to sphere size. 

1. Introduction 

Monolayers of charged colloidal particles trapped in suspensions or constrained to a free 
water surface have been proposed as analogues of two dimensional (2D) condensed- 
phase atomic systems. The special interest in colloidal monolayers derives from their 
ability to replicate melting and crystallisation phenomena in ZD, while having the useful 
feature that positions and trajectories of individual particles can be monitored using 
microscopy in combination with digital image processing (see figure 1). 

Interest in 2D melting has centred around the theory of defect-mediated melting first 
described by Kosterlitz and Thouless [l, 21 and later expanded upon by Halperin and 
Nelson [3,4] and Young [5] .  Kosterlitz and Thouless suggested that a 2~ solid would 
exhibit quasi-long range (QLR) order characterised by power-law decay of the trans- 
lational correlation function, which would switch over to exponential decay in the liquid 
phase. Noting that a small number of paired dislocations exist in a 2~ solid well below 
the melting transition, they proposed that the solid might melt as a result of the thermal 
unbinding of these bound dislocations. The transition would be continuous (second 
order) and would occur at a temperature T,  at which bound dislocation pairs move apart 
sufficiently to screen similar pairs, allowing these to unbind. Halperin and Nelson noted, 
in agreement with Mermin’s [6] earlier observation, that long-range bond-angle order 
could exist in 2 ~ ,  and if the Kosterlitz-Thouless mechanism were correct, then melting 
should occur in two stages. Rather than becoming a liquid immediately above T,  the 
system should first enter a hexatic phase having short-range translational order and QLR 
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Figure 1. A photomicrograph of ii colloidal monol;iyer of 2.SS {tni microsphcrcs on the 
surface of water. The  interparticle spacing is 5 . h y m  ( N  = 500. with reference t o  figure 4). 

orientational order, eventually converting to a liquid phase at some higher temperature 
when disclination pairs unbind. While other theories have been suggested [7,8], it is the 
Kosterlitz-Thouless-Halperin-Nelson-Young ( KTHNY) model with its novel prediction 
of an intermediate hexatic phase that has received the most attention. 

Although no consensus has emerged, the results from many computer simulations 
find that 2~ meltingoccursvia afirst-ordertransition. Thisissupported by the appearance 
of hysteresis and discontinuities in the internal energy, and by the observation of van 
der Waals loops in plots of pressure against density. (For a current review of computer 
simulations and experiments in 2D melting see [9].) Also, particle-trajector y plots show 
areas of local disorder enclosed within ordered regions, suggestive of a two-phase 
coexistence regime near the transition temperature. The observed discontinuities or 
loops are small, indicating that the transition is only weakly first order [lo]. Since the 
KTHNY mechanism is a long-wavelength theory, the finite size and imposed periodicity 
of the computer simulations may obscure the true nature of the transition, although 
simulations on relatively large particle systems [ l l ,  121 suggest that this is not the case. 

The results of experiments on 2D systems are ambiguous as to the order of the phase 
transition. Experiments on 2~ systems of electrons on the surface of liquid helium 
[ 131 have found that the elastic response of the system goes to zero at the predicted 
dislocation-pair-unbinding temperature T,, in good agreement with the KTHNY theory. 
Experiments on rare-gas films on the surface of graphite [14-161 and on monolayers of 
organic molecules on the surface of water [17,18] have had mixed results. For xenon on 
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the surface of graphite Rosenbaum and co-workers [ 141 and Heiney and co-workers [ 151 
found results consistent with the KTHNY theory, although the latter were unable to rule 
out the possibility of two-phase coexistence. More recently Nagler and co-workers [16] 
have examined the same system. While their results were consistent with the existence 
of an hexatic phase, they suggest that until the effects of the substrate orienting field are 
better understood experiments of this type cannot be conclusive. Results of experiments 
on freely suspended liquid crystals [ 19,201 indicate a first order transition. Recent work 
by Murray and Van Winkle [21] and Tang and co-workers [22] on systems of polystyrene 
colloidal particles trapped between two glass plates found the behaviour of the trans- 
lational and orientational correlation functions to be consistent with a two-stage process, 
although Tang was unable to rule out the possibility of two-phase coexistence. 

In view of these differences, several authors have re-examined the KTHNY mechan- 
ism, paying particular attention to the role of the core energy required to create a tightly 
bound pair of dislocations. Saito [23] has conducted a Monte Carlo simulation which 
considers only the dislocation creation, annihilation and diffusion probabilities for 
varying values of the core creation energy. He finds that for large values of the core 
energy the system follows the KTHNY theory, while for small values of the core energy 
the transition becomes first order. Kleinert [24,25] has examined the problem using a 
gauge-field theory approach and finds that variations in core energy will cause the 
transition to switch from first to second order in a manner consistent with the simulation 
of Saito [23]. 

In this paper we present the results of a study of isothermal-expansion melting 
in colloidal microsphere monolayers on the surface of water. In 0 2 we describe the 
experimental system, the data analysis and the chosen model for the pair interaction. 
From the particle positions and the model-pair interaction, the equation of state, the 
defect structure and the correlation functions are determined. The experimental results 
for two different sphere diameters, 1.01 pm and 2.88 pm, are presented in 8 3. For each 
size the calculated equation of state is fitted in the low-density region with a power series 
in particle number. The 2.88 pm system shows an intermediate orientationally ordered 
(hexatic) phase, while the nature of the transition for the 1.01 pm system is uncertain. 
In § 4 we discuss the phase transitions for the two different systems. We suggest that the 
1.01 pm system may melt via a first-order transition and the contrast between the two 
systems may be ascribed to differences in their respective values of the core creation 
energy as suggested by Saito [23]. 

2. Experimental system 

2. I .  Apparatus and procedure 

Samples are formed on an ultra-clean water surface in a 19 x 3.8 x 1 cm3 anodised- 
aluminum Langmuir trough dyed black and coated with a thin film of Teflon. The trough 
is mounted in an isolation box containing supports for two Teflon barriers used to sweep 
the surface clean and to compress the sample. The barriers are driven by lead screws 
attached to a 5000 : 1 reduction DC motor. The entire apparatus is mounted on a micro- 
scope equipped with a motor-driven translation stage and a video camera connected to 
a video-cassette recorder. 

Highly-uniform monodisperse polystyrene microspheres, 0.1-5.0 pm in diameter, 
are commercially available and have long been used to produce classical analogues of 



1710 A J Armstrong et a1 

three-dimensional crystals [26]. Attached to and uniformly distributed over the surface 
of the spheres are sulphate polar head groups. When immersed in water the sulphate 
groups dissociate leaving a net negative charge on the sphere and a hydrogen-ion cloud 
surrounding it. The spheres are carefully cleaned to remove any residual surfactants and 
ions by repeated centrifuging with methanol. Cleaning is critical, since the presence of 
any surfactant, either in the sphere-methanol suspension or on the free-water surface, 
will inhibit the formation of crystals. 

Samples are prepared by overfilling the trough so that a large meniscus is present to 
enable formation of a good seal between the trough and the barriers. The surface is swept 
with the barriers to remove any residual surface contaminants. The entire apparatus is 
allowed to equilibrate to room temperature, which is maintained to k 1 "C during the 
experiment. The spheres are deposited by allowing several drops of the sphere-methanol 
suspension to flow down a clean glass rod penetrating the water surface. The suspension 
spreads over the surface and very little material is transferred to the bulk. The methanol 
either evaporates or is absorbed into the water, leaving the spheres trapped on the 
surface by electrostatic and surface-tension forces [27,28]. 

A successful transfer of the microspheres to the water surface will yield a monolayer 
consisting primarily of monodisperse particles with a fraction of apercent of multiparticle 
clusters (two or three spheres sticking together). If improperly prepared, the percentage 
of multiparticle clusters will be high, and the formation of crystals will be inhibited. 
Severe contamination will yield a 2D glass or, in some cases, circular islands of crystal 
surrounded by the contaminant. The concentration of multiparticle defects appears to 
be independent of the initial density deposited on the surface and seems to depend only 
on the cleanliness of the system. At present we lack sufficient data to give a clear picture 
of the effect of these multiparticle contaminants. Qualitatively it appears that they pin 
grain boundaries and thus limit the grain size in the solid state; the larger the percentage 
of multiparticle defects, the smaller the resulting grains in the solid. 

A video tape is made of the entire compression-expansion history of the system. 
Selected images from the video tape are digitised with a 512 X 480 pixel digitiser and 
stored on disc for laterprocessing. Images are processed with a series of image-enhancing 
filters to correct for noise and non-uniform illumination [29]. The total 2~ area sampled 
after the images are processed is 6.73 X cm2. The particle number observed in this 
area ranges from 600 (8.9 X lo5 particles cm-2) in the low-density gaseous regime to 
approximately 6000 (8.9 X lo6  particles cm-2) in the high-density crystalline regime. 
This gives a variation in interparticle separation ranging from approximately 4 to 12 pm. 
From the processed images the position of the centre of mass of the individual spheres 
is located and stored. The configurational thermodynamics, defect structures and cor- 
relation functions are determined from the centre-of-mass data. 

2.2. The systems examined 

The 2.88 pm monolayer was deposited on the surface at a relatively high density, with 
the barriers confining the spheres within half of the total area of the trough. The total 
number of particles on the surface was estimated to be ==3 x lo7 and the multiparticle 
cluster count was approximately three per thousand particles. The sample showed initial 
density variations across the surface and was allowed to equilibrate for one day. Then it 
was examined and found to be homogeneous across the surface, except near the edges 
of the trough, where the curvature of the meniscus causes a substantial density gradient 
due to compression by the gravitational field. Two compression-expansion cycles for 
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this system are analysed here. The sample was compressed-expanded at approximately 
80-100 pm per minute for ten-minute periods or until each barrier had advanced 1 mm 
(800-1000pm). Between these periods the system was allowed to relax for 45 to 60 
minutes before the compression-expansion was continued. In some cases it was allowed 
to rest longer, several hours or overnight, with no observable differences from the 60 min 
relaxation periods. 

After several days the sample started to accumulate additional large clustered defects 
and vacant regions, indicating the presence of surface contaminates attributable to 
possible leaching from the trough or from airborne particulates. This limits the useful 
sample life to about one week. 

Two 1.01 pm samples, designated lOlA and 101B, were analysed under compression 
only. Sample lOlA was deposited at low density with both barriers completely retracted 
so that the monolayer covered the entire trough. The estimated number of particles on 
the surface was -3 X lo7 and the multiparticle cluster count was approximately 12 per 
thousand particles. The sample was allowed to equilibrate for one day, after which an 
examination of the surface showed a uniform distribution of particles. This monolayer 
was compressed at a rate of 80 to 100 pm min-' for three successive three-hour periods, 
with intervals of five and thirteen hours between compressions. During this time no 
detectable density gradients were observed over the surface except for the normal 
density gradients at the edges where the meniscus curves sharply. Also, near the barriers 
in the direction of their advance, a density gradient was observed that extended beyond 
that normally caused by the meniscus. The compression was continued until many large- 
aggregate close-packed rafts of particles (50-100 in number) formed. At this point the 
monolayer was no longer useful and was discarded. 

The second sample, 101B, was made under similar circumstances. The total number 
of particles in the monolayer was estimated to be -4 X lo7, with a cluster defect count 
of nine per thousand particles. After equilibrating for one day the sample was uniform 
over the surface. The system was compressed at 20 pm min-' continuously for two 
intervals of two and three hours respectively, with a twelve-hour relaxation period 
between them. It was then completely expanded and allowed to equilibrate for one day, 
after which the surface was re-examined. Over its flat portions the monolayer was gas- 
like, while at the edges, within the curvature of the meniscus, the system varied from a 
gas to a highly ordered crystalline solid phase adjoining the trough edge. Data were 
taken from a scan of this gradient region. The profile of the surface was found by moving 
the stage a known amount and measuring the vertical distance needed to bring the 
surface back into focus. 

2.3. The pair interaction and equation of state 

The 2~ pair interaction energy for microspheres in the plane of the air-water interface 
can be separated into two parts 

where q e ( r )  is the electrostatic potential energy due to the dissociation of charged head 
groups and, qc(r )  is a capillary interaction resulting from the distortion of the free 
surface by the trapped spheres. Pieranski [30] proposed that the long-range electrostatic 
interaction between microspheres at an air-water surface was dipolar, resulting from 
the asymmetric charge distribution imposed by the presence of the surface. Hurd [31], 
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expanding on the work of Stillinger [32], has derived the form of the dipole-pair inter- 
action energy for two spheres on the surface of water. He finds 

where K is the Debye screening length for pure water, E is the dielectric constant of 
water, e is the electronic charge, and Z is the number of dissociated head groups per 
sphere. The first term in equation (2) is the long-range dipole contribution with moment 

p = Z e / G K  

that results from the distortion of the counterion cloud by the surface; the second term 
is the screened Coulomb interaction for charged particles in a bulk electrolyte corrected 
for the presence of the dielectric interface. 

Since the capillary interaction q7,(r) is long range and can be either attractive or 
repulsive [27], it can be significant in systems of this type. However, it is found to be 
negligible for the sphere sizes used in this work when compared to the electrostatic 
terms, and we ignore it in all calculations. 

Using the model interaction of equation (2) and taking the particle positions from 
the processed images, the equation of state can be found by direct application of the 
virial theorem 

where V q ( l r , l )  is the gradient of the pair interaction in equation (2) and rII is the vector 
joining the ith andjth particles. The 2D areaA used in the calculation of the equation of 
state is chosen near the centre of each processed image and is equal to 1.59 x cm2; 
N is the observed particle number within A. All parameters are known in equation (2) 
except 2, which depends on the spheres’ wetted surface area and on the fraction of 
dissociated head groups, so it is convenient to calculate the configurational part of the 
equation of state divided by Z 2 ,  giving 

where 

3. Results 

3.1. Equation of state 

The configurational component of the equation of state for sample lOlA and a log-log 
version of the same are shown in figures 2 and 3, respectively. The densities covered 
range from a gas to a highly ordered polycrystalline solid phase. Each point represents 
a single frame from the video tape of a gaseous-to-solid compression. The inherent error 
introduced by the uncertainty in particle separations, t 1 pixel or = ?0.5 pm, is obscured 
by the size of the data points and is much smaller than the statistical scatter of the 
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Figure 2. The configurational component of the equation of state divided by 2' for sample 
lOlA (1.01 pm particles). The number of particles in an area of 1.59 X cmz near the 
centre of the video image determines the particle number (N) of the x axis. The solid line 
is the fit calculated from the low-density virial expansion: points in the very low density 
regime are obscured by the fit. In this figure and in figures 3 and 4 each point is from a 
single video frame. The error introduced from the uncertainty in particle positions is 
smaller than the point size. 

individual frame values. Since each point represents only one configuration, the results 
presented here do not comprise an actual equation of state. Strictly speaking, each 
piece of data should be an average over many uncorrelated frames: however, this is 
computationally impractical with our computer capability. The narrowness of the scatter 
in figures 2 and 3 suggests that the single-frame data provide a useful approximation to 
the actual equation of state within the experimental resolution. 

The equation of state can be written as a power series in particle number given by 

For a dilute gas only the first few terms will contribute significantly to the sum. Fitting the 
low density region of figure 2 with a fourth order polynomial in N gives the approximate 
equation of state, 

(PA - NkB T ) / Z 2  = 0.432 X w 9 k ~  TN2 - 0.147 X lo-" kB TN3 

+ 0.114 X 1 0 - 1 3 k ~ T N 4 . .  .. (6) 
The experimental equation of state is seen to compare well with the low density virial 
expansion given by equation (6) up to N = 1000. The solid line in figure 2 is the low- 
density fit of the equation of state. At higher densities the data deviate systematically 
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Figure 3. Log-log plot of the configurational component of the equation of state divided 
by Z 2  for sample lOlA (1.01 prn spheres). (Positions marked (a ) ,  (b )  and (c) relate to 
figure 5 . )  

from the low-density approximation. For low N-values the log-log plot of the same data 
(figure 3) shows a slight upward curvature, to a linear regime for 400 S N s 1000, and 
then displays a systematic departure from linearity for N > 1000. This change near 1000 
particles shows itself in figure 3 as a very slight alteration in slope. 

The log-log plot of the equation of state for the 2.88 pm system is shown in figure 4. 
The densities cover the range from a disordered gaseous phase to a nearly defect-free 
solid. The overall shape of the curve is similar to that of sample 101A, but shows some 
distinct differences. In the low-density region the curve is nearly linear and is fitted well 
by a low-density virial expansion. The equation of state in this region is given by 

(PA - NkB T ) / Z 2  = 0.314 X w 9 k ~  TN2 - 0.159 X lo-" kB TN3 

+ 0.101 x 10-14kB2" . . .. (7) 
The fit is poor at the higher densities, as was observed with sample 101A, and shows a 
significant systematic departure from the data for N 3 600. For 600 S N < 1600 the 
curve looks very similar to that of the 1.01 pm sample, and again, near N = 1000 the 
curve makes a slight change in slope. However, the correlation functions and defect 
structures differ dramatically from their counterpartsin the 1.01 pm systems. (See B O  3.2 
and 3.3 below.) 

Broughton et a1 [lo], van Swol and Woodcock [33], and Kalia and Vashishta [34] 
have performed molecular-dynamics simulations on systems interacting under various 
inverse-power potentials. They inferred the existence of a weak first-order transition 
from the observation of small discontinuities in the equation of state and in the internal 
energy, with accompanying hysteresis. We see no sign of a distinct discontinuity or van 
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Figure 4. Log-lot plot of the configurational component of the equation of state divided 
by Z 2  for the 2.88 pm sample. (Positions marked (a), ( b )  and ( c )  relate to figure 6.) 

der Waals loop in either the 1.01 pm or the 2.88 pm samples, and for the 2.88 pm sample 
there is no sign of hysteresis. At our magnification and for the relatively small number 
of particles used in these experiments the presence of any discontinuity or loop could be 
hidden within the resolution of the experiment. 

3.2. Defect structure 

Samples of the defect structure for sample 101A and the 2.88 pm system are shown 
in figures 5 and 6, respectively. The defect maps are constructed by finding the 
minimum area polygon (Wigner-Seitz cell) made by the intersection of the per- 
pendicular bisectors of the bonds joining a particle to a set of its nearest neighbours 
[35].  If the number of sides of the resulting polygon is not six it is given a symbol 
marking its centre of mass and drawn. Five-sided polygons are shaded and the centres 
of seven-sided polygons are marked with a + sign; particles having six nearest 
neighbours have a point marking their centre of mass. Dislocations appear as con- 
tiguous five- and seven-sided polygons with the resulting Burger’s vector oriented 
roughly normal to the line joining the polygon centres. 

In figure 5 representative frames from three different density regions of sample 
101A are shown. Their corresponding positions in the equation of state plot (figure 
3 )  are marked ( a ) ,  (b ) ,  and (c ) ,  accordingly: (a) is a representative frame from the 
polycrystalline solid; (b)  is a frame taken near the region where the low density virial 
expansion no longer fits the data ( N  2 1000); and (c) is a frame chosen from well into 
the gaseous regime. 

In the low-density gas phase (figure 5 ( c ) )  the maps show surprisingly large regions 
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with no defects; this is an often noted feature in 2~ systems [lo,  351. The defects form 
large connected clusters that nearly span the system and sometimes completely isolate 
the defect-free areas from each other. Close examination of the defect-free areas show 
that the axes defining local regions display considerable wander and bend. The scatter 
in their orientation is significant enough to suggest that these regions may well be 
transitory. (The defect maps are representations of essentially instantaneous particle 
configurations.) 

The defect structure near the change in slope in figure 3 (position ( b )  in figure 3) 
is depicted in figure 5(b) and differs markedly from the gas-liquid structure (figure 
5(c)). The defect clusters have now thinned and no longer appear close to spanning 
the system. The defect-free areas are larger and the local axes in these regions are 
well defined and even appear to correlate with those in other ordered regions. At this 
density, tightly bound dislocation pairs are now easily seen in the ordered pools and 
are also seen in association with defect clusters. Since a dislocation can be thought of 
as two adjacent disclinations (connected five- and seven-sided polygons), the tightly 
bound dislocation pairs appear as quadrupoles of disclinations. (We will refer to these 
tightly bound pairs of dislocations as quadrupoles.) The quadrupoles have a net 
Burger’s vector of zero and form the lowest energy configuration for two oppositely 
oriented dislocations. The quadrupoles in general are observed to be short lived, with 
their number and positions fluctuating rapidly. The proliferation of quadrupoles has 
been reported in many simulations [lo,  23,351. 

The map of the solid phase well above the slight change in slope in the equation 
of state is shown in figure 5(a).  Aside from the difference in density, figures 5(a) and 
5(b)  appear similar. The defect structure is almost entirely confined to small clusters 
or well defined strings of dislocations which mark the grain boundaries between 
differently oriented crystallites. The number of isolated dislocations in the interior of 
the crystallites is small while the number of observed quadrupoles appears large. We 
believe that the small grain size in the solid state of the 1.01 pm samples is the result 
of a large multiparticle defect count. It appears that these multiparticle defects trap 
dislocations between them and create the grain boundaries. Rubinstein and Nelson 
[36] have examined computer-generated random packing arrays of hard discs with 
mixed disc diameters and find similar results. They find that a single large impurity 
disc placed at the centre of the system traps dislocations and can, for large enough 
off-size diameter, give rise to arrays of stacking faults and grain boundaries. 

The defect structure of the 2.88 pm system is much different (see figure 6). At low 
densities (not shown) it is similar to the 1.01 pm systems, except the average cluster 
size is smaller and defect clusters do not span the system. The fraction of six- 
coordinated particles F6, defined as the number of six-sided cells divided by the total 
number of cells, is larger for the 2.88 pm system at all densities; in the low-density 
region (200 to 400 particles) F,  is 71% for the 2.88pm system as against 61% for 
1.01 pm system. The distinctive difference in defect structure between the two systems 
appears in the intermediate-density region below the apparent slope change in figure 
4 (600 < N s 1000). Figure 6(c) shows the defect structure of the 2.88 pm system 
slightly below this point (position (c) in figure 4). This is noticeably different from 
that of figure 5(c)  for the 1.01 pm system. At these densities the system displays QLR 
orientational order and short-range translational order (a  3.3). The crystal axes are 
well defined, implying orientational correlation among the particles over the entire 
frame. The dislocations are well separated with the exception of the small strings and 
clusters in the mid-right-hand side. The lowest defect pair in the far lower left-hand 
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corner of figure 6(c) is a vacancy. Vacancies and interstitials are often marked by a 
pair of closely bound dislocations offset by one lattice spacing. Vacancies have the 
dislocations offset such that the two seven-sided polygons are stacked on top of each 
other, while interstitials appear with stacked five-sided polygons. (These are not the 
only defect configurations that identify vacancies and interstitials.) A frame from the 
region marked ( b )  in figure 4 is shown in figure 6(b). Here the density of dislocations 
is reduced and it is possible to clearly distinguish some dislocation pairs. In figure 6(a) 
a frame well above the change in slope in figure 4 is shown (position (a)  in figure 4). 
Here the number of defects is small (as in figure 6(b) )  and the separation distance for 
coupled pairs is likewise small. 

3.3. Correlation functions 

The translational correlation functions, 

g(r> = (p(r)p(O)) 

for selected densities of the 2.88 pm sample are shown in figure 7 and the corresponding 
orientational correlation functions in figure 8. Each curve is an average of correlation 
functions from 5 to 20 frames. The translational correlation functions have been offset 
for clarity; all the functions decay to unity. The orientational correlation function is 
given by [35] 

Figure 7. Samples of the average translational 
correlation functions g(r )  from the 2.88 ym 
sample. Each curve is the average of 5 to 20 
correlation functions from individual frames. 
The particle numbers are: A, N = 867; B, N = 
829; and C, N = 726. 
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Figure 8. Samples of the average orientational correlation functions (g6(r)/g(r)) from the 
2.88 pm sample. The particle numbers for the curves are: A, N = 867; B, N = 829; C ,  
N = 650; N = 629; E, N = 514; F, N = 332; G, N = 197; and H, N = 147. Curves A 
through F show power-law decay to zero while G and H display exponential decay. Notice 
that there is considerable variation in the curves at intermediate densities, as indicated by 
the crossing of D and E. 

where g(r)  is the translational correlation function and q 6  is defined by 
. N  

with 6, defined as the angle between the ith and the jth particle and some chosen axis. 
At very low densities both correlation functions decay rapidly to zero and show 

increasing order, characterised by slower decay, as the density increases. The cor- 
relation lengths for g(r)  are determined by fitting the curves with a series of zero-order 
Bessel functions having exponentially decaying coefficients [22] 

g(r )  = 1 + A l  exp(-r/cl)Jo(Glr) + A 2  exp(-r/g2)JO(G2r) + . . .. (10) 
Here the Ai are constants, the Gi are proportional to the inverse of the distance to the 
shells of neighbours and gi are the decay constants. For low densities the correlation 
functions are fitted well with only one term, and the correlation length is taken as E l .  
These series expansions duplicate the experimental curves remarkably well, including 
some of the observed fine structure. 

The correlation length or the power-law exponent for the decay of the orientational 
correlation function is found by fitting the data at large r with decaying exponential 
or power-law functions. There is some ambiguity in the fit of these data, since often 
the same data can be fitted with either a power-law or an exponential function. For 
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Figure 9. Translational (squares) and 
orientational correlation (diamonds) 
lengths for the 2.88pm sample. Each 
point is an average over 5 to 20 frames; 
the error bars are the uncertainty of the 
fit to these average functions. The orien- 
tational correlation functions show 
power-law decay between the rise in 
orientational correlation length, N = 200, 
and the rise in translational correlation, 
N = 900. The full curves are guides to the 
eye. N 

this reason the behaviour of the orientational correlation function is examined from 
the low-density side of the transition where the decay is expected to be exponential. 
A rapid rise or divergence in the correlation length is looked for, and the densities 
above this apparent divergence are examined with power-law decay fits. 

The behaviour of both the translational and orientational correlation lengths as a 
function of particle number for the 2.88 ym system is shown in figure 9. Each point 
represents a correlation length obtained from an average of 5 to 20 correlation 
functions from different regions of the sample. The orientational correlation functions 
show clear exponential behaviour at very low densities with the correlation length 
rising abruptly at around N = 200 particles. From N = 400 to N = 900 particles g6(r)  
shows power-law behaviour with decay to zero. In this density range the values of the 
power-law exponents vary substantially from region to region. Notice the crossing of 
curves D and E in figure 8. We attribute this anomaly to a non-homogeneous 
distribution of dislocations in the system at the length scale that is sampled. 

The corresponding translational correlation length (squares in figure 9) increases 
slowly with density until N = 900 particles at which point it rises abruptly. Above N = 
900 the correlation length again falls off, showing relatively short-range order. We 
interpret the rapid rise near N = 900 particles as the transition to a solid, and suggest 
that the fall-off in correlation lengths above this number is the result of compressing 
the 2D solid which produces internal strain and plastic distortion. The existence of a 
region of short-range translational correlation and QLR orientational order (appearing 
in the range 300 < N < 900, figure 9) is a necessary signature of the hexatic phase. 

Samples of average translational and orientational correlation functions from the 
meniscus data of sample 101B are shown in figures 10 and 11. The translational 
correlation functions are similar to those of the 2.88 ym system over the entire density 
range. The orientational correlation functions however, show a distinct difference 
from those of the 2.88 ym system. For the latter the orientational correlation functions 
at intermediate densities show a gentle downward slope to zero-power-law decay. In 
the former (both 101A and 101B), the low-density regions show definite exponential 
decay to zero while at higher densities the functions change character and show 
exponential decay to a constant. This change in character occurs in a very narrow 
region near N = 900 particles. 
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Figure 10. Samples of the average translational 
correlation functions from the meniscus data of 
sample 101B. Each curve is the average of five 
correlation functions. The corresponding par- 
ticle numbers are: A, N = 1048; B, N = 1002; 
and C, N = 934. 

The correlation lengths of the translational and orientational correlation functions 
for sample 101B, including both the scan of the density gradient down the meniscus 
and the barrier compression data, are shown in figure (12) and (13) respectively. Each 
point represents the average of five individual frames. Both the orientational and 
translational correlation lengths are approximately equal at low densities and show a 
slow increase until N = 900 particles, at which point they both start to rise rapidly. 
The meniscus data (squares in figure 12) show a steady increase in correlation length 
leading to the rapid rise and a peak at N = 1000 particles. The translational correlation 
lengths of the barrier compression data (diamonds in figure 12) parallel the meniscus 
data at low density, but fail to rise at higher N values. The translational correlation 
lengths of sample 101A (not shown) also fail to show a substantial increase near the 
suspected transition. 

The orientational correlation lengths for the barrier compression and meniscus 
data show more agreement (figure 13), with both starting to rise abruptly at N = 900 
particles. Beyond N = 940 particles the orientational correlation functions from the 
meniscus data can no longer be fitted with exponentials decaying to zero but require 
exponentials decaying to finite constants: this is an indication of long-range orien- 
tational order. In this same region the orientational correlation lengths given by the 
barrier compression data rise abruptly as well, but are still derived from fits to an 
exponential function that decays to zero, The orientational correlation lengths of 
samples 101A and 101B are combined in figure 14. The results appear to be internally 
consistent. 
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Figure 11. Examples of the average orientational correlation functions from sample lOlB, 
The particle numbers for the curves are: A, N = 1077; B, N = 1002; C,  N = 934; D, N = 
965; E, N = 932; and F, N = 864. Curves A, B and C a r e  from the meniscus data and decay 
exponentially to non-zero constants; while D, E and F a r e  curves from the compression data 
and decay exponentially to zero. Note the difference in behaviour between the two curves 
with the same approximate particle number. 

The failure of the translational correlation length of the 1.01 pm barrier com- 
pression data to rise near the suspected transition implies that we may be quenching 
the system at the transition. We are confident that the meniscus data from the 1.01 pm 
system is in equilibrium. The simultaneous rise in the orientational correlation lengths 
of both the barrier compression and meniscus scan data suggests that these systems 
are not far from equilibrium even very near the transition. Away from the suspected 
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Figure 12. The translational correlation 
length against the number of particles for 
sample 101B; each point is the average 
over five frames. The indicated error is the 
uncertainty of the fit of these functions. 
Included are both the meniscus-scan 
(squares) and the barrier-compression 
(diamonds) data. The full curve is a guide 
to the eye. 
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Figure 13. The orientational correlation 
length g 6  against the number of particles 
for the meniscus-scan (squares) and bar- 
rier compression (diamonds) data of 
sample 101B. Each pcint is an average of 
five individual correlation functions; the 
quoted error is from the uncertainty of 
the fits. The full curve is a guide to the 
eye. 

Figure 14. The orientational correlation 
length E6 against the number of particles 
for both samples lOlA and 101B. The 
meniscus-scan (squares) and barrier-com- 
pression (diamonds) data of sample lOlB 
are averages of five correlation functions; 
the quoted error is the uncertainty of the 
fit of these averages. The data from 
sample lOlA (circles) are instantaneous 
configurations of the system and not aver- 
ages. The full curve is a guide to the eye. 

transition we failed to observe any density gradient, but noted localised short-range 
density fluctuations with a timescale short compared to that imposed by the moving 
barriers. This suggests that away from the transition the system was near equilibrium. 
For the 2.88pm particles there were no observable density gradients and we were 
unable to detect any differences between compressions and expansions of the system. 
This combined with the relatively long times given for the system to relax between 
compression (expansion) steps, suggest that near-equilibrium was maintained. 

4. Discussion 

The nature of the defect structure, and the clear presence of QLR orientational order 
in company with short-range translational order, suggests that the 2.88 pm system 
melts in a manner consistent with the KTHNY mechanism. This is in contrast to the 
1.01 pm systems which show: 

(i) a near simultaneous abrupt rise in the orientational and translational correlation 
lengths at N = 900 (5.66 X lo6 particles cm-2); 
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(ii) a change in the orientational correlation function from exponential decay to 

(iii) a distinctly different nature in the defect structure and its evolution. 
zero, to decay to a constant with no evidence of a power law region; 

This behaviour suggests a change of phase that is consistent with a first order transition. 
In addition, by viewing the video images of the 1.01 pm sample, one sees a rapid 
change in behaviour as the system is compressed through those densities where the 
correlation lengths rise and the slope in the equation of state seems to change. The 
Brownian motion of the 1.01 pm systems shows an abrupt reduction in amplitude as 
the density is increased through a narrow density range near N = 900. There are also 
fluctuating disordered areas of lower density surrounded by more ordered regions of 
higher density, suggesting a narrow range of two-phase coexistence. In contrast, the 
Brownian amplitude in the 2.88pm system decreases gradually as the density is 
increased through the rather broad hexatic phase to the solid phase. 

There are interesting groupings of defects in the 2.88 pm sample. In addition to 
considering pairs of dislocations, interactions among dislocation triplets must also be 
considered in order to complete the Halperin-Nelson renormalisation procedure. 
These triplets consist of three bound dislocations whose total Burgers vector is zero. 
Their formation may be thought of as occurring when one dislocation of a pair, with 
a Burgers vector along one of the local axes, separates into two distinct dislocations 
whose Burgers vectors lie along the other two axes. The sum of the two new Burgers 
vectors equals the Burgers vector of the original dislocation. These dislocations then 
interact with the remaining original dislocation. A somewhat more complex structure 
than a triplet is shown in the upper-left-hand corner of figure 6(c). Here the interaction 
is among a quartet of dislocations. Two of these dislocations are isolated and the other 
two are in contact. The Burgers vectors of the two isolated dislocations are at 60 
degrees to each other, and the sum of the Burgers vectors of the dislocations in contact 
is at 60 degrees to each of those for the isolated defects. Considering the dislocations 
in contact as a single dislocation, the structure forms a triplet: the total Burgers vector 
is zero and a Burgers circuit around the structure closes. Evidence of two dislocations 
combining to form a single dislocation is shown in figure 15. Here two dislocations in 
the 2.88 pm sample with different Burgers vectors approach and annihilate, leaving a 
single dislocation. When the two dislocations annihilate, the two Burgers vectors add, 
leaving a single resultant dislocation. The total Burgers vector is conserved, but the 
number of dislocations is not. The dissociation of dislocations and the formation of 
loops of three or more dislocations with a total Burgers vector of zero occurs commonly 
in the 2.88pm sample. While the KTHNY theory only includes interactions among 
dislocation triplets, higher order interactions could be included, and we feel that the 
above observations are further evidence of KTHNY behaviour. 

The major difference in the melting of the 2.88 pm system from the KTHNY theory 
occurs in the hexatic-to-fluid transition. In the KTHNY theory the hexatic-to-fluid 
transition should occur with the unbinding of bound disclination pairs (dislocations) 
to free disclinations via a screening mechanism analogous to that of dislocation 
unbinding. We clearly do not see a recognisable disclination unbinding in the defect 
structure. The hexatic-to-fluid transition appears to occur as the result of dislocations 
interacting to form clusters of defects and grain boundaries. Since a disclination can be 
composed of a string of dislocations of equal Burgers vectors [25],  loss of orientational 
correlation can occur from the growth of dislocation combinations and clusters. For 
example, in figure 6(c) in the upper-right quadrant there is a small string of four 
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Figure 15. A sequence of complete cell defect 
maps of the 2.88pm system showing two dis- 
locations approaching (via dislocation glide) and 
annihilating to leave a single dislocation. Note 
that the total Burgers vector is conserved. 

dislocations forming a linear chain. The lowermost polygon in the chain is five sided 
and the uppermost seven sided. If we consider these two polygons as two disclinations 
unbinding, then the chain of dislocations would represent two disclinations separated 
by approximately six lattice constants. As other dislocations with the proper Burgers 
vectors join the chain, they would increase the separation distance between the two 
opposite disclinations terminating the chain. Such a scenario may have the same effect 
on the local structure as would the decomposition of individual dislocations to their 
constituent disclinations in the KTHNY manner. 

Finally, the fraction of six-coordinated particles F6, defined earlier, is displayed in 
figures 16 and 17. F6 for the 2.88 pm system (figure 16) climbs very abruptly to around 
90% at a very low number density, and then increases gradually as the sample solidifies. 
In contrast, F6 climbs much more slowly in the 1.01 pm sample (figure 17) and remains 
comparatively small, even at high number densities. Consequently, the solid phase of 
the 2.88 pm sphere system is relatively defect-sparse in comparison to that formed 
from the smaller spheres. Assuming that the dislocation creation probability obeys a 
Boltzmann distribution, this suggests that defect-core energies in the two samples may 
be significantly different, with the 2.88 pm system having a much larger core creation 
energy than the 1.01 pm system. 

If the l.Ol,um and 2.88 pm systems do indeed melt via transitions of differing order, 
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Figure 16. The fraction of six-coordinated particles F6 against the number of particles for 
a sequence of individual frames of the 2.88 pm system. 

0.76 

0.66 

F6 

. .  ... . 
* .  - .. '. 

. %  .. * * c . -.: . 

400 800 1200 
N 

Figure 17. The fraction of six-coordinated particles F6 against the number of particles for 
a sequence of individual frames of the 1.01 pm system. 

then the above observation may provide the basis for an explanation. If the core 
energy for the creation of a bound pair in the 1.01 ym sample is small, then the number 
of dislocation pairs should proliferate as the melting transition is approached. With a 
large dislocation density the KTHNY renormalisation method loses validity. In this case, 
one might expect that a model based on Saito's observations [23] could be more 
appropriate for describing melting in the 1.01 ym sample. On the other hand, if the 
2.88ym system has a high core creation energy as indicated by figure 16, then one 
expects few dislocations and the system should behave in accord with KTHNY theory. 

In conclusion, we have carried out a study of expansion (compression) melting 
(freezing) in 2D interfacial colloids. We find that the 2.88 ym system displays behaviour 
consistent with the existence of a hexatic phase and that the 1.01 ym systems appear 
to melt via a first-order transition. There is circumstantial evidence of a qualitative 
difference in melting behaviour arising from sphere-size-related differences in the 
energy required to create bound dislocation pairs. Theisignificance of this evidence is 
mitigated somewhat by the presence of numerous multiparticle defects in the samples 
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formed with 1.01 pm diameter microspheres. Such impurities may lower the core 
creation energy and enhance the production of defects. 
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